MARK SCHEME for the October/November 2013 series

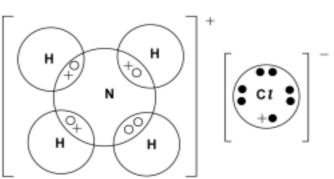
9701 CHEMISTRY

9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	42

1 (a)

8 e⁻ around chlorine 1 H–electron (+) on the C*I*⁻ ion 3 covalent (ox) and one dative (oo) around N

[3]

[1] [1]

[1]

(b) (i)	it would react (with H ₂ SO ₄)	[1]

- (ii) $CaO + H_2O \longrightarrow Ca(OH)_2$ [1]
- (iii) CaO absorbs more water *or* CaO has greater affinity for water [1]
 - [3]

(c)	(i)	$2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2$	[1]
	(ii)	(Down the group, the nitrates)	
		become more stable/stability increases	[1]
		because the size/radius of ion (\mathbf{M}^{2+}) increases	[1]
		thus causing less polarisation/distortion of the anion/NO $_3$ -/N-O bond	[1]
			[4]

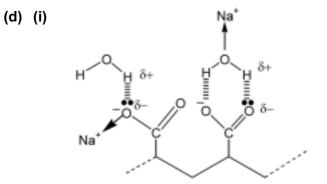
[Total: 10]

	Page 3		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	42
2	(a) (i)	Si-S	i bonds are weaker (than C-C bonds)		[1]
	(ii)	meta	allic (Sn) is weaker than (giant) covalent (Ge)		[1]
					[2]
	(b) (i)	or Si or Si	$\begin{array}{rcl} &+& 2H_2O & \longrightarrow & SiO_2 + 4HCl \\ &Cl_4 &+& 4H_2O & \longrightarrow & Si(OH)_4 + 4HCl \\ &Cl_4 &+& 3H_2O & \longrightarrow & H_2SiO_3 + 4HCl \\ &Sial hydrolysis is not sufficient e.g. to SiCl_3OH + HCl) \end{array}$		[1]
	(ii)	PbC	$l_4 \longrightarrow PbCl_2 + Cl_2$		[1]
	(iii)	SnC	l_2 + 2FeC $l_3 \longrightarrow$ SnC l_4 + 2FeC l_2		[1]
	(iv)	or S	$_{2}$ + 2NaOH \longrightarrow Na ₂ SnO ₃ + H ₂ O nO ₂ + 2NaOH + 2H ₂ O \longrightarrow Na ₂ Sn(OH) ₆ nic equation SnO ₂ + 2OH ⁻ \longrightarrow SnO ₃ ²⁻ + H ₂ O		[1] [4]
					[4]
					[Total: 6]

Page	4	Mark Scheme	Syllabus	Paper	•
		GCE A LEVEL – October/November 2013	9701	42	
3 (a) (i)		+ HZ \longrightarrow NH ₄ ⁺ + Z ⁻ OH + HZ \longrightarrow CH ₃ OH ₂ ⁺ + Z ⁻			[1] [1]
(ii)	-	+ $B^{-} \longrightarrow NH_{2}^{-}$ + BH OH + $B^{-} \longrightarrow CH_{3}O^{-}$ + BH			[1] [1]
					[4]
(b) (i)	a rea	action that can go in either direction			[1]
(ii)		of forward = rate of backward reaction prward/back reactions occurring but concentrations of a	all species do no	t change	[1]
					[2]
(c) (i)	a so	lution that resists changes in pH			[1]
	whe	n small quantities of acid or base/alkali are added			[1]
(ii)	in th	e equilibrium system HZ + $H_2O \Rightarrow Z^- + H_3O^+$			[1]
		tion of acid: reaction moves to the left [⁺] combines with Z [⁻] <u>and</u> forms HZ			[1]
		tion of base: the reaction moves to the right [⁺] combines with OH ⁻ <u>and</u> more Z ⁻ formed			[1]
				[5 ma	ax 4]
(d) (i)	[H⁺]	= $\sqrt{(0.5 \times 1.34 \times 10^{-5})}$ = 2.59 × 10 ⁻³ (mol dm ⁻³)			[1]
	pH =	= 2.59/2.6 (min 1 d.p)		ecf	[1]
(ii)	CH₃	$CH_2CO_2H + NaOH \longrightarrow CH_3CH_2CO_2Na + H_2O$			[1]
(iii)	n(ac	id) in 100 cm ³ = 0.5 × 100/1000 = 0.05 mol id) remaining = 0.05 – 0.03 = 0.02 mol I remaining] = 0.2 (mol dm ⁻³)			[1]
		vise, n(salt) = 0.03 mol] + 0.3 (mol dm ⁻³)			[1]
(iv)	pH =	= 4.87 + log(0.3/0.2) = 5.04–5.05		ecf	[1]
					[6]
• • •	-	CH_2COCl			
Ji	is NaC				[2]
(0)	r corre	sponding Br compounds for G , H and J ; CH_3CH_2COBr	r, SOBr ₂ , NaBr)	[Total:	: 181

	Page 5		Mark Scheme	Syllabus	Paper	,
			GCE A LEVEL – October/November 2013	9701	42	
4			rgy change) when 1 mol of bonds n in the gas phase			[1] [1]
						[2]
	(b) (i)	(C-X	K bond energy) decreases/becomes weaker (from F to	I)		[1]
		due	to bond becoming longer/not such efficient orbital over	lap		[1]
	(ii)	•	the bond energy of C-X decreases) the halogenalkanes ower must imply that it is from F to I)	s become more r	eactive	[1]
						[3]
	• •		<i>l</i> bond is weaker than the C-F <u>and</u> C-H bonds bond (E = 340) and C-H (E = 410)			[1]
	so	o is (ea	sily) broken to form C <i>l</i> */C <i>l</i> radicals/C <i>l</i> atoms			[1]
	ca	ausing	the breakdown of O_3 into O_2			[1]
						[3]
	(d) Ci	l-CH₂C	H ₂ -CO ₂ H			[1]
	H	O-CH ₂	CH_2CH_2 - Cl			[1]
	<	\bigcirc	OH			
	Br					[1]
						[3]
						[-]
	(e) (i)	light	/UV/hv <i>or</i> 300°C			[1]
	(ii)	(free	e) radical substitution			[1]
	(iii)) ∆H	= $E(C-H) - E(H-Cl) = 410 - 431 = -21 \text{ kJ mol}^{-1}$			[1]
	(iv)) ∆H	= $E(C-H) - E(H-I) = 410 - 299 = +111 \text{ kJ mol}^{-1}$		ecf	[1]
	(v)	The	reaction with iodine is endothermic or ΔH is positive or	requires energy		[1]
	(vi)	CH₃	$ 2Cl^{\bullet}$ $CH_{2}^{\bullet} + Cl_{2} \longrightarrow CH_{3}CH_{2}Cl + Cl^{\bullet}$			[1] [1]
		CH₃	$CH_2^{\bullet} + Cl^{\bullet} \longrightarrow CH_3CH_2Cl$			[1]
						[8]
					[Total:	: 19]

	Page 6	5	Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	42
5	(a) (i)	man	y monomers form a polymer		[1]
	(ii)	addi	tion		[1]
	(iii)		/double/ π bond is broken and new C-C single bond <u>s</u> a puble bond breaks and forms single bonds with other r		[1]
					[3]
	(b) pro	penoi	c acid		[1]
					[1]


(c) (i) CO₂Na CO₂Na

carbon chain and CO_2H at least one sodium salt

(ii) 120° to 109(.5)° [1] due to the change from a trigonal/sp² carbon to a tetrahedral/sp³ carbon [1]

[4]

[1] [1]

Any four: hydrogen bond **labelled** water H-bonded to O through H atom δ +/ δ - shown on each end of a H-bond lone pair shown on O⁻ or C=O or H₂O on a **correct H-bond** Na⁺ shown as coordinated to a water molecule

- [3]
- (ii) Solution became paler and Cu⁽²⁺⁾ swapped with Na⁽⁺⁾
 or darker in colour and polymer absorbs water [1]

[4]

Page 7	,	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	42
(e) (i)	alke	ne(1), amide(1)		[2]
(ii)	NH ₃			[1]
(iii)	H ₂ O			[1]
(iv)		(aq)/H₃O ⁺ and heat/reflux (not warm) H⁻ (aq), heat and acidify		[1]
	0, 0	i (aq), neat and actuiry		[5]
				[Total: 17]

	Page 8	8	Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	42
			Section B		
6	(a) (i)	six/6	(gsv, sgv, gvs, vgs, svg,vsg)		[1]
	(ii)	н	Î		
		H2		OH	
			displayed peptide bonds ect formula of peptide		[1] [1]
	(iii)	valin	e (allow glycine)		[1]
	(iv)	hydr	two of: ogen bonds and CO ₂ H or OH or NH ₂ or CONH or CO	or NH or CO_2^-	
			bonds and NH₃ ⁺ <i>or</i> CO₂ [−] der Waals' and –CH₃ <i>or</i> –H		2 × [1]
					[6]
	(b) (i)	sam	e shape/structure as substrate		[1]
			bitor) competes/blocks/binds/bonds to active site		[4]
			ubstrate cannot bind to active site		[1]
			s with enzyme and changes shape/3D structure (of er	izyme/active site)	[1]
	(iii)	Rate of reaction ++	No inhibitor Non-competitive inhibitor		

[1]

[4]

[Total: 10]

Substrate Concentration +

Pa	ge 9	Mark Scheme	Syllabus	Paper	
гa	90 3	GCE A LEVEL – October/November 2013	9701	42	
7 (a)	2	d.c. power supply allow allow	n		
	ele gel	ver supply (idea of complete circuit) ctrolyte/buffer solution filter paper/absorbent paper			
	(an	nino acid) sample/mixture [centre of plate]		4 :	× [1]
					[4]
(b)	size cha	<i>y two from:</i> e/M _r (of the amino acid species) arge (on the amino acid species) aperature		2 :	× [1] [2]
(c)	ore	io of the <u>concentration</u> of a solute in each of two (immiscible equilibrium constant representing the distribution of a solute $PC = [X]_a/[X]_b$ (at a constant temperature)		vents	[1] [1]
(d)	(i)	$K_{pc} = [Z \text{ in ether}]/[Z \text{ in } H_2O] - allow reverse ratio40 = (x/0.05)/((4-x)/0.5)$			[1]
		= 3.2 g		ecf	[1]
	(ii)	First extraction 40 = (x/0.025)/((4–x)/0.5) x = 2.67 g		ecf	[1]
	(iii)	Second extraction: 1.33g remain in solution Second extraction 40 = (y/0.025)/((1.33-y)/0.5) y = 0.887 g			
		mass extracted = 2.67 + 0.89 = 3.56/3.6 g		ecf	[1]
					[4]
				[Total:	11]

	Page 10		0	Mark Scheme	Syllabus	Paper
				GCE A LEVEL – October/November 2013	9701	42
8	(a)	(i)	(nitra	ates are) soluble		[1
		(ii)	Ba ⁽²⁻	⁺⁾ and Pb ⁽²⁺⁾		[1
			SO4	(2-)		[1
			BaC	O ₃ /PbCO ₃ /CaSO ₄ are insoluble		[1
						[4
	(b)	(i)	fertil	isers/animal manure		[1
		(ii)	wasl	hing powder/detergents/fertilisers/animal manure		[1
	(iii)		vth/production of algae/weeds/plants utrophication		[1
						[3
	(c)	(i)	any	one of:		
			2SO	$P_2 + O_2 \longrightarrow 2SO_3$ and $SO_3 + H_2O \longrightarrow H_2SO_4$		
			or S	$O_2 + NO_2 \longrightarrow SO_3 + NO$ and $SO_3 + H_2O \longrightarrow H_2SO_4$		

(ii) roasting sulfide ores/extraction of metals from sulfide ores [1]

[2]

[Total: 9]